Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Gels ; 10(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391450

RESUMO

Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused by the hydrophilicity of their polymer matrix limits their practical application. In this work, a novel, controllable, and efficient templating method was utilized to construct a highly hydrophobic surface for freeze-drying aerogels. The influence of templates on the macroscopic morphology and hydrophobic properties of materials was investigated in detail. This method provided the economical and rapid preparation of a water-resistant aerogel made from polyvinyl alcohol (PVA) and montmorillonite (MMT), putting forward a new direction for the research and development of new, environmentally friendly materials.

2.
Gels ; 7(2)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066884

RESUMO

Sodium hydroxide was used as a base catalyst to reduce the flammability of poly(vinyl alcohol) (PVA) aerogels. The base-modified aerogels exhibited significantly enhanced compressive moduli, likely resulting in decreased gallery spacing and increased numbers of "struts" in their structures. The onset of decomposition temperature decreased for the PVA aerogels in the presence of the base, which appears to hinder the polymer pyrolysis process, leading instead to the facile formation of dense char. Cone calorimetry testing showed a dramatic decrease in heat release when the base was added. The results indicate that an unexpected base-catalyzed dehydration occurs at fire temperatures, which is the opposite of the chemistry normally observed under typical synthesis conditions.

3.
Polymers (Basel) ; 12(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272648

RESUMO

Biological molecules can be obtained from natural sources or from commercial waste streams and can serve as effective feedstocks for a wide range of polymer products. From foams to epoxies and composites to bulk plastics, biomolecules show processability, thermal stability, and mechanical adaptations to fulfill current material requirements. This paper summarizes the known bio-sourced (or bio-derived), environmentally safe, thermo-oxidative, and flame retardant (BEST-FR) additives from animal tissues, plant fibers, food waste, and other natural resources. The flammability, flame retardance, and-where available-effects on polymer matrix's mechanical properties of these materials will be presented. Their method of incorporation into the matrix, and the matrices for which the BEST-FR should be applicable will also be made known if reported. Lastly, a review on terminology and testing methodology is provided with comments on future developments in the field.

4.
Materials (Basel) ; 11(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-29401663

RESUMO

Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm³ range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work.

5.
Polymers (Basel) ; 10(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30961027

RESUMO

Poly(vinyl alcohol) (PVA), tannic acid (TA) and sodium hydroxide (NaOH) were used to prepare low-flammability, mechanically-strong aerogels via an environmentally-friendly freeze-drying method. Because of the strong interaction between TA and PVA through hydrogen bonds, PVA/TA/NaOH aerogels exhibited compressive moduli as high as 12.7 MPa, 20 times that of the control PVA aerogel. The microstructure of the aerogels in this study showed that the addition of NaOH disrupted the typical "card of house" aerogel structure, while the samples with TA showed a stereoscopic uniform structure. The thermal stabilities of aerogels were tested by thermogravimetric analysis, showing both a decrease on the onset of decomposition temperature, and a reduction in decomposition rate after initial char formation. The peak heat release rate and total heat release, as measured by cone calorimetry, dropped by 69% and 54%, respectively, after adding TA and NaOH.

6.
Gels ; 4(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30674784

RESUMO

Dispersion of graphite in water was achieved using clay as dispersing aid. In the absence of polymer, the clay/graphite suspensions were sufficiently stable to produce aerogels composed of very thin layers of uniformly dispersed nanoparticles. Poly(vinyl alcohol) (PVOH) aerogels containing binary nanofillers (clay plus graphite) were then fabricated and tested. These composites were found to maintain low thermal and electrical conductivities even with high loading of graphite. A unique compressive stress-strain behavior was observed for the aerogel, exhibiting a plateau in the densification region, likely due to sliding between clay and graphite layers within the PVOH matrix. The aerogels containing only graphite exhibited higher compressive modulus, yield stress and toughness values than the samples filled with binary nanofillers. X-ray diffraction (XRD) spectra for the same composite aerogel before and after compression testing illustrated the compression-induced dispersion changes of nanofillers. Composites containing 50 wt % graphite demonstrated a downshift of its 2D Raman peak implying graphite exfoliation to graphene with less than 5 layers.

7.
Gels ; 4(2)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30674809

RESUMO

A series of low density, highly porous clay/poly(vinyl alcohol) composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

8.
ACS Appl Mater Interfaces ; 9(48): 42258-42265, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29140679

RESUMO

Biobased gelatins were used to improve the compressive properties and flammability of poly(vinyl alcohol)/montmorillonite (PVA/MMT) aerogels, fabricated using a simple and environmentally friendly freeze-drying method. Because of the excellent compatibility and strong interfacial adhesion between PVA and gelatin, the compressive moduli of aerogels were enhanced dramatically with the incorporation of gelatin. PVA/MMT/porcine-gelatin aerogels exhibit compressive modulus values as much as 12.4 MPa, nearly 300% that of the control PVA/MMT aerogel. The microstructure of the PVA/MMT/gelatin aerogels shows a three-dimensional co-continuous network. Combustion testing demonstrated that with the addition of gelatin, the self-extinguishing time of the aerogel was cut by half and the limiting-oxygen-index values increased to 28.5%. The peak heat-release rate, obtained from cone calorimetry, also decreased with the incorporation of gelatin. Thermogravimetric analysis demonstrated that the gelatins slowed the sharp decomposition of the PVA matrix polymer and increased the thermal stability of the aerogels at the major decomposition stage of the composite aerogels. These results indicate that as a green, biobased material, gelatin could simultaneously improve the mechanical properties and the properties of flame retardancy.

9.
ACS Appl Mater Interfaces ; 9(27): 22985-22993, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28621921

RESUMO

Inorganc silica-based aerogels, the earliest and widely used aerogels, have poorer mechanical properties than their organic substitutes, which are flammable. In this study, a novel polymeric aerogel with high strength, inherent flame retardancy, and cost-effectiveness, which is based on poly(vinyl alcohol) (PVA) cross-linked with melamine-formaldehyde (MF), was prepared under aqueous condition with an ecofriendly freeze-drying and postcuring process. Combined with the additional rigid MF network and benifited from the resulting unique infrastructure of inter-cross-linked flexible PVA segments and rigid MF segments, PVA-based aerogels exibited a significantly decreased degradation rate and sharply decreased peak heat release rate (PHRR) in cone calorimeter tests (by as much as 83%) compared with neat PVA. The polymer aerogels have a limiting oxygen index (LOI) as high as 36.5% and V-0 rating in UL-94 test. Furthermore, the aerogel samples exposured to harsh temperatures maintain their dimensions (<10% change), original mechanical strength and fire safety. Therefore, this work provides a novel stragegy for preparing pure organic polymeric aerogel materials with high mechanical strength, dimensional stability, and fire safety.

10.
ACS Appl Mater Interfaces ; 9(9): 8287-8296, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28186399

RESUMO

With unique advantages over inorganic aerogels including higher strengths and compressive moduli, greater toughness, and the ability to be fabricated as a flexible thin film, polymer aerogels have the potential to supplant inorganic aerogels in numerous applications. Among polymer aerogels, polyimide aerogels possess a high degree of high thermal stability as well as outstanding mechanical properties. However, while the onset of thermal decomposition for these materials is typically very high (greater than 500 °C), the polyimide aerogels undergo dramatic thermally induced shrinkage at temperatures well below their glass transition (Tg) or decomposition temperature, which limits their use. In this study, we show that shrinkage is reduced when a bulky moiety is incorporated in the polymer backbone. Twenty different formulations of polyimide aerogels were synthesized from 3,3,'4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-oxidianiline (ODA) or a combination of ODA and 9,9'-bis(4-aminophenyl)fluorene (BAPF) and cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC) in a statistically designed study. The polymer concentration, n-value, and molar concentration of ODA and BAPF were varied to demonstrate the effect of these variables on certain properties. Samples containing BAPF showed a reduction in shrinkage by as much as 50% after aging at elevated temperatures for 500 h compared to those made with ODA alone.

11.
ACS Appl Mater Interfaces ; 8(47): 32557-32564, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933853

RESUMO

Highly efficient flame retardant polyurethane foams with alginate/clay aerogel coatings were fabricated using a freeze-drying method. The microstructure and the interaction of the samples were characterized with scanning electron and optical microscopy (SEM) and (OM). The results show that PU foam has a porous structure with pore sizes of several hundred microns, and that of aerogel ranges from 10 to 30 µm. The PU foam matrix and the aerogel coatings have strong interactions, due to the infusion of aerogel into the porous structure of the foam and the tension generated during the freeze-drying process. Both the PU foam and the aerogel exhibit good thermal stabilities, with onset decomposition temperatures above 240 °C. Combustion parameters, including LOI, TTI, HRR, TSR, FIGRA, CO, and CO2, all indicate significantly reduced fire risk. Total heat release of all but one of the samples was maintained, indicating that the flame retardant mechanism is to decrease flame spread rate by forming a heat, oxygen, and smoke barrier, rather than by reducing fuel content. This facile and inexpensive post-treatment of PU foam could expand its fire safe applications.

12.
ACS Appl Mater Interfaces ; 8(20): 13051-7, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27144401

RESUMO

Both inorganic and polymeric aerogels are well-known in the materials field. Inorganic aerogels are generally susceptible to brittle fracture, while polymeric aerogels tend to exhibit low modului and high flammability. To overcome these disadvantages, we introduce a new approach to the design of aerogels. A microporous poly(vinyl alcohol) (PVA) aerogel/silica nanocomposite was prepared by growing a silica conformal coating onto a PVA aerogel scaffold. Such aerogel/silica nanocomposites show significant improvement in their mechanical properties over either individual component. The nanocomposites show excellent fire resistance since the silica conformal coating serves as a barrier for heat transfer and mass loss of the coated organic materials. After a fluorocarbon silane treatment, the nanocomposites also show durable superhydrophobicity.

13.
ACS Appl Mater Interfaces ; 8(15): 9917-24, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27045343

RESUMO

A novel biomass-based mechanically strong and electrically conductive polymer aerogel was fabricated from aniline and biodegradable pectin. The strong hydrogen bonding interactions between polyaniline (PANI) and pectin resulted in a defined structure and enhanced properties of the aerogel. All the resultant aerogels exhibited self-surppoted 3D nanoporous network structures with high surface areas (207-331m(2)/g) and hierarchical pores. The results from electrical conductivity measurements and compressive tests revealed that these aerogels also had favorable conductivities (0.002-0.1 S/m) and good compressive modulus (1.2-1.4 MPa). The aerogel further used as electrode for supercapacitors showed enhanced capacitive performance (184 F/g at 0.5 A/g). Over 74% of the initial capacitance was maintained after repeating 1000 cycles of the cylic voltammetry test, while the capacitance retention of PANI was only 57%. The improved electrochemical performance may be attributed to the combinative properties of good electrical conductivity, BET surface areas, and stable nanoporous structure of the aerogel. Thus, this aerogel shows great potential as electrode materials for supercapacitors.

14.
Gels ; 2(2)2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30674147

RESUMO

Highly porous, low density palladium nanoparticle/clay aerogel materials have been produced and demonstrated to possess significant catalytic activity for olefin hydrogenation and isomerization reactions at low/ambient pressures. This technology opens up a new route for the production of catalytic materials.

15.
ACS Appl Mater Interfaces ; 8(1): 643-50, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26675804

RESUMO

Nonflammable materials based on renewable ammonium alginate and nano fillers (nanoscale magnesium hydroxide, nanoscale aluminum hydroxide, layered double hydroxide, sodium montmorillonite, and Kaolin) were fabricated through a simple, environmentally friendly freeze-drying process, in which water was used as a solvent. A simple and economic post-cross-linking method was used to obtain homogeneous samples. The microstructure of the cross-linked alginate aerogels show three-dimensional networks. These materials exhibit low densities (0.064-0.116 g cm(-3)), low thermal conductivities (0.024-0.046 W/m K), and useful mechanical strengths (0.7-3.5 MPa). The aerogels also exhibit high thermal stabilities and achieve inherent nonflammability with limiting oxygen indexes (LOI) higher than 60. Related properties were conducted and analyzed by cone calorimeter (CC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). These results combine to suggest promising prospects for use of these aerogel nanocomposites in a range of applications.

16.
ACS Appl Mater Interfaces ; 7(36): 20208-14, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26287451

RESUMO

Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

17.
ACS Appl Mater Interfaces ; 7(3): 1780-6, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25588129

RESUMO

Ammonium polyphosphates (APP) modified with piperazine (PA-APP) was used to improve the flame retardancy of poly(vinyl alcohol) (PVA)/montmorillonite (MMT) aerogels, which were prepared via an environmentally friendly freeze-drying method. The thermal stabilities of the samples were evaluated by thermogravimetric analysis (TG); the flammability behaviors of samples were investigated by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter (CC) tests. TG test results showed that the 5% weight loss temperature (T5%) of PVA/MMT/PA-APP was 10 °C higher than that of PVA/MMT/APP. In combustion testing, all of PVA/MMT/PA-APP aerogels achieved V-0 ratings and have a higher LOI values than the unmodified PVA/MMT aerogel. Moreover, the aerogel with 1% PA-APP5, which means that the content of piperazine is 5% in PA-APP, decreased the cone calorimetry THR value to 5.71 MJ/m(2), and increased the char residue to 52%. The compressive modulus of PVA/MMT/PA-APP was increased by 93.4% compared with PVA/MMT/APP because of the increase in interfacial adhesion between matrix and PA-APP fillers. The densities of the PVA/MMT/PA-APP samples were slightly lower than those of the unmodified aerogels because of reduced shrinkage in the presence of PA-APP. All the tests results indicated that the incorporation of PA-APP not only improved the thermal stability and flame retardancy of aerogels but also maintained their mechanical properties.

18.
Materials (Basel) ; 8(8): 5440-5451, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28793515

RESUMO

Novel, low density structures which combine biologically-based fibers with clay aerogels are produced in an environmentally benign manner using water as solvent, and no additional processing chemicals. Three different reinforcing fibers, silk, soy silk, and hemp, are evaluated in combination with poly(vinyl alcohol) matrix polymer combined with montmorillonite clay. The mechanical properties of the aerogels are demonstrated to increase with reinforcing fiber length, in each case limited by a critical fiber length, beyond which mechanical properties decline due to maldistribution of filler, and disruption of the aerogel structure. Rather than the classical model for reinforced composite properties, the chemical compatibility of reinforcing fibers with the polymer/clay matrix dominated mechanical performance, along with the tendencies of the fibers to kink under compression.

19.
ACS Appl Mater Interfaces ; 6(18): 16227-36, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25164075

RESUMO

Poly(vinyl alcohol) (PVOH)/clay aerogel composites were fabricated by an environmentally friendly freeze-drying of the aqueous precursor suspensions, followed by cross-linking induced by gamma irradiation without chemical additives. The influences of cross-linking conditions, i.e., absorbed dose and polymer loading as well as density on the aerogel structure and properties, were investigated. The absorbed dose of 30 kGy was found to be the optimum dose for fabricating strong PVOH composites; the compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt % PVOH/8 wt % clay increased 10-fold, and that containing 1 wt % PVOH/9 wt % clay increased 12 times upon cross-linking with a dose of 30 kGy. Increasing the solids concentration led to an increase in the mechanical strength, in accordance with the changes in microstructure from layered structure to network structure. The increase of absorbed dose also led to decreased porous size of the network structure. Cross-linking and the increase of the PVOH lead to decreased thermal stability. The strengthened PVOH/clay aerogels possess very low flammability, as measured by cone calorimetry, with heat, smoke, and volatile products release value decreasing as increasing clay content. The mechanism of flame retardation in these materials was investigated with weight loss, FTIR, WAXD, and SEM of the burned residues. The proposed mechanism is that with decreasing fuel content (increasing clay content), increased heat and mass transport barriers are developed; simultaneously low levels of thermal conductivity are maintained during the burning.

20.
ACS Appl Mater Interfaces ; 6(9): 6790-6, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24731187

RESUMO

Poly(vinyl alcohol) (PVOH)-based aerogel composites with nanoscale silica, halloysite, montmorillonite (MMT), and laponite were prepared via a freeze-drying method. The PVOH/MMT and PVOH/laponite composites exhibit higher compressive moduli than the PVOH/SiO2 or PVOH/halloysite samples. Layered microstructures were observed for the samples except with PVOH/laponite, which showed irregular network morphologies. Thermogravimetric analysis of the aerogel samples showed increased thermal stability with the addition of nanofillers. The heat release measured by cone calorimetry, smoke release, and carbon monoxide production of the aerogel composites are all significantly decreased with the addition of nanofillers; these values are much lower than those for commercial expanded polystyrene foam. The fillers did not lead to obvious increases in the limiting oxygen index values, and the corresponding time to ignition values decrease. The ability to adjust the nanofiller levels in these foamlike aerogel composites allows for specific tuning of these products for fire safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA